Office of Air Quality Planning and Standards

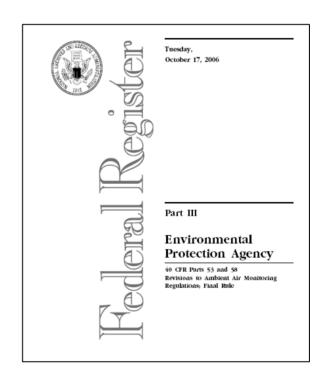
Implementing the 2006 Revisions to the Ambient Monitoring Regulations

Updates for AQS Conference Participants

Monitoring Rule Revisions at the 50,000' Level

PM NAAQS

- New/updated Federal reference methods and Federal equivalent method approval procedures
- Approved Regional Method for PM_{2.5}
- Daily sampling frequency for some PM_{2.5} FRM's
- National Monitoring Strategy
 - Reduced or eliminated minimum network requirements for some criteria pollutants
 - New NCore network requirements
 - Quality assurance program refinements
- Clarification of special purpose monitor provisions
- Accelerated data certification schedule
- Public inspection requirement for annual monitoring network plans
- New 5-year network assessment requirements


For more detail:
Presentations from the 2006
National Monitoring Conference

http://www.epa.gov/ttn/amtic/2006present.html

Key Rule Deadlines

Effective in 60 Days from Federal Register Printing - (December 18, 2006)

- New criteria for approval of Federal Equivalent Methods for PM_{2.5} and PM_{10-2.5}, and Approved Regional Methods
- New QA requirements for SLAMS
- New required numbers of PM_{2.5}, PM₁₀, Pb, and ozone monitors by MSA, if lower than old
- Removal of required numbers for CO, SO₂, and NO₂ (except if in SIP)
- Criteria for removal of monitors above required number
- Conditions on use of SPM data
- Removal of required reporting of certain PM_{2.5} monitoring parameters
- PM_{10-2.5} probe heights
- Increased distance between roadways and NEW ozone monitors

Effective January 1, 2007

- Every day PM_{2.5} samples at about 50 stations reading close to the new 24-hour standard
- Retention of low-volume PM₁₀ and PM_{10-2.5} filters in addition to PM_{2.5}
- Reporting of PM_{2.5} field blank filter mass data to AQS
 - http://www.epa.gov/ttn/airs/airsaqs/faq/aqsfaq_loadingdata_files/PM2.5%20Blanks.pdf
 - A few questions but reporting is proceeding OK (several thousand records available for 2007 data so far)
 - 1st quarter 2007 field blank mass data as of early June, median value = 3 μg (max = 183, min = -106)

Effective July 1, 2007

- 8
- Precision and accuracy data for Q1 of 2007 must be submitted to AQS
 - Not an explicit requirement in old rule, not all monitoring organizations have been reporting it
- Annual monitoring plan
 - Describe your SLAMS and SPM stations
 - Propose changes for R.A. approval that are anticipated up to 18 months in the future. R.A. can take 120 days to approve
 - Must make plan available to public for 30 days <u>prior</u> to giving to EPA. Inviting public comments at this stage will save EPA doing so later
 - Strategy Use this as opportunity to clean up the network documentation, and as a public information resource
 - For example, recheck geographic coordinates with GPS, revise/insert other site and monitor descriptions in AQS. We really use this stuff!

Effective September 10, 2007 Direct Final Rule to Correct and Clarify Monitoring Rule

- What is being corrected?
 - Print errors in tables, figures, and equations mainly in Part 53 rule text.
 A few errors occurred in Part 58 as well.
 - Few miscellaneous corrections
- What is being clarified?
 - Operating schedule rule text (58.12)
 - A few preamble statements that were inconsistent with rule text
 - Missing PM₁₀ network design (Appendix D) rule text restored
 - Other rule text revisions for clarity (e.g., use of local standard time)
- What is being added?
 - Proposed R.A. authority to deviate from PM10 minimum monitoring requirements
- Rule timetable
 - Published in Federal Register June 12, 2007 (72 FR 32193)
 - Public comment period ends July 12, 2007 (72 FR 32266) but please contact Lewis Weinstock directly with your questions so we don't have to withdraw provisions and re-propose

Effective January 1, 2008

- Start operation of any new required PM_{2.5}, PM₁₀, or ozone monitors.
 - About 13 new PM_{2.5} monitors.
 - Few additional ozone monitors.
 - PM₁₀ monitors in approximately 8 MSAs.
 - R.A. would be able to waive PM10 requirement if no comments received on applicable DFR provision.

Effective January 1, 2009

- New QA requirements apply to Special Purpose Monitoring stations using FRM, FEM, or ARM monitors.
 - Regional Administrator can approve an alternative for practicality reasons, if full QA not essential to monitoring objective.
 - Alternative QA plan means data not comparable to the NAAQS.

Effective July 1, 2009

Plan for required NCore stations.

Effective May 1, 2010

 Revised deadline for annual certification of data (CY 2009) submitted to AQS.

Effective July 1, 2010

First 5-year network assessment.

Effective January 1, 2011

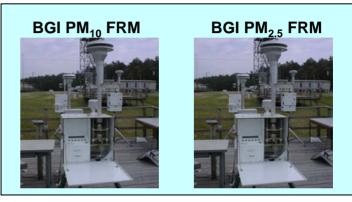
Operation of NCore stations.

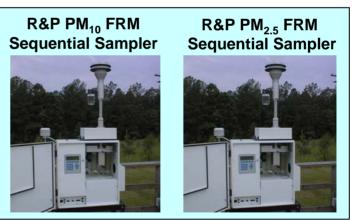
PM Methods

PM₁₀ Monitors

What's new:

- Basically nothing old rule language and requirements retained
- Regional Administrator authority to waive minimum requirements (consistent with PM2.5 and ozone) included in Direct Final Rule


For your consideration:


- Revisit your monitoring objectives
- Discontinue low value sites even though marginal savings may not be large in the short term. Give priority to urban/industrial areas with high concentrations.
- Replace high volume samplers with low volume samplers to reduce uncertainty and support PM10-2.5 measurements.
- Document in your upcoming and future annual monitoring network plans

Coarse Particles: PM_{10-2.5}

- What's new (no NAAQS but):
 - PM_{10-2.5} FRM
 - Criteria for approval of reference or equivalent methods
 - NCore monitoring requirement for mass and speciation (1-in-3 day)
- For your consideration:
 - Pairing existing low-volume PM₁₀ samplers with PM_{2.5} FRM = PM_{10-2.5} FRM
 - Reporting data to AQS to support coarse particle studies
 - Transition excess PM_{2,5} samplers to paired PM_{10-2.5} FRM's if opportunity occurs, particularly in areas with high levels of coarse
- Improved monitoring data is needed to support the next round of PM NAAQS reviews that will conclude in 2011

Reporting PM_{10-2.5} to AQS

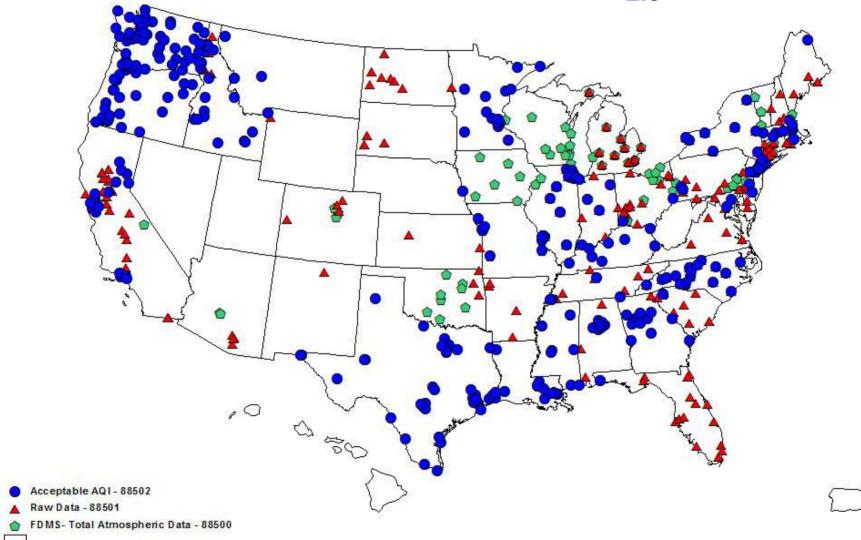
- New parameter code available 86502
- Must report the PM_{2.5} concentration (88101) and the difference (PM₁₀-PM_{2.5}) concentration. The low volume PM₁₀ concentration (at local conditions) is desired but not required.
 - Report negatives if you get them when the individual filters are validated.
 Will help to track method performance.
- Method codes set up on most likely sampler pairings.
 - Not FRM's yet until vendors apply for designations and those are approved.

Parameter Code Parameter Desc		Methodology Code	Sample Coll Desc	Sample Analysis Desc	
86502	Acceptable PM10-2.5 - Local Conditions	116	BGI MODEL PQ200 PM2.5 SAMPLER w/WINS	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	117	R & P MODEL 2000 PM2.5 SAMPLER w/WINS	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	118	R & P MODEL 2025 PM2.5 SEQUENTIAL w/WINS	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	119	ANDERSEN RAAS2.5-100 PM2.5 SAM w/WINS	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	120	ANDERSEN RAAS2.5-300 PM2.5 SEQ w/WINS	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	123	THERMO ENV MODEL 605 CAPS	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	128	Andersen RAAS2.5-2000PM2.5 Aud w/WINS	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	129	R & P COMODEL 2000 PM-2.5 AUDIT w/WINS	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	135	URG-MASS100 SINGLE PM2.5 SAMPLER	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	136	URG-MASS300 SEQUENTIAL PM2.5 SAMPLER	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	142	BGI Models PQ200-VSCC or PQ200A-VSCC	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	143	R & P Model 2000 PM-2.5 Air Sampler w/VSCC	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	144	R & P Model 2000 PM-2.5 Audit Sampler w/VSCC	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	145	R & P Model 2025 PM-2.5 Sequential Air Sampler w/VSCC	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	153	Thermo Electron Model RAAS2.5-100 w/VSCC	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	154	Thermo Electron Model RAAS2.5-200 Audit w/VSCC	Paired-Gravimetric-Difference	
86502	Acceptable PM10-2.5 - Local Conditions	155	Thermo Electron Model RAAS2.5-300 Sequential w/VSCC	Paired-Gravimetric-Difference	

Fine Particles: PM_{2.5}

What's new:

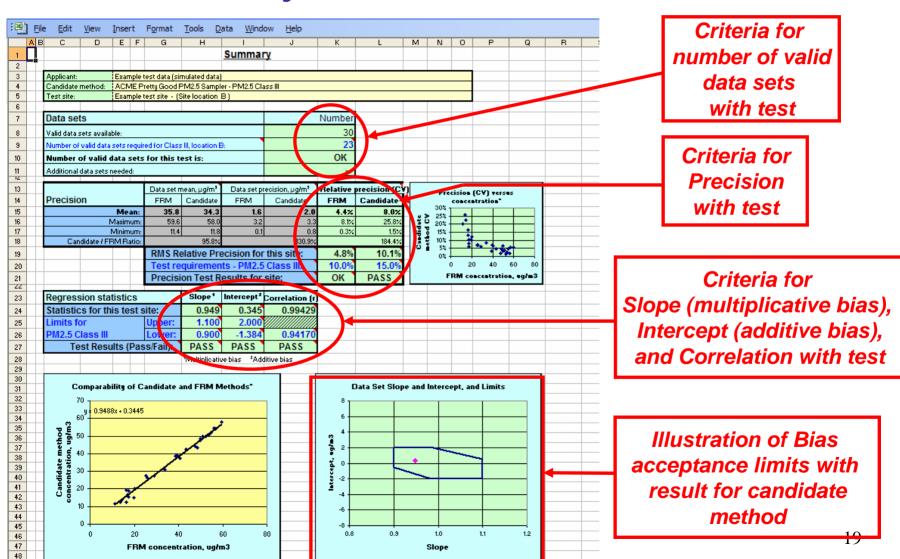
- Slight changes to FRM based on already approved procedures
- Criteria for approval of reference and equivalent methods
- Approved Regional Method process (dialogue with monitoring staff to see if an ARM application is being considered)
- Minimum monitoring requirements based on MSA population and design value
 - Still have background and transport site requirements
- Daily operating schedules for design value monitors within 5% of 24-hour NAAQS
- Continuous monitoring requirement (does not have to be FEM or ARM) one half of required monitors
- Field blank mass reported to AQS


Parameter Codes for Reporting PM_{2.5} Data to AQS

Parameter Name	Parameter Code	Purpose		
PM2.5 LOCAL CONDITIONS	88101	Appropriate code for all FRM/FEM/ARMs		
PM2.5 TOTAL ATMOSPHERIC	88500	Valid data from methods measuring total PM _{2.5} aerosols in the atmosphere, including those that can be volatilized from the FRM		
PM2.5 RAW DATA	88501	Valid uncorrected data that does not reasonably match the FRM		
ACCEPTABLE PM2.5 AQI & SPECIATION MASS	88502	Valid data that <u>does</u> reasonably match the FRM with or without correction, but not to be used in NAAQS decisions		
PM2.5 VOLATILE CHANNEL	88503	Store important related data such as the FDMS reference channel		

88101 is only for methods eligible for NAAQS decision-making and has been shut off for continuous data as of Feb 2007.

Parameter Codes for Reporting PM_{2.5} Data to AQS


Approved Regional Methods (ARMs) for PM_{2.5}

- A PM_{2.5} continuous method approved for use within a State, local, or Tribal agency used to meet multiple monitoring objectives such as NAAQS, Air Quality Index, and forecast validation.
- Allows agencies to optimize their PM_{2.5} network with well performing (and currently deployed) continuous methods that may not perform well in all required FEM testing regions.
- Monitoring Agency-driven Testing Process
 - Uses basically the same performance criteria as Class III methods.
 - Testing occurs at subset of sites in the network within which it's intended to be used.
- Approvals
 - Initial ARM application approved through EPA's Office of Research & Development.
 - Subsequent applications for method in another agency's network approved by EPA Regional Office.
 - All procedures (including proposed use of data transformations) must be fully described in Quality Assurance Program Plan accompanying ARM application.
 - OAQPS developed FEM/ARM tool to help with calculations

49

Summary Sheet of FEM/ARM Tool

FEM/ARM Tool Notes

- Templates are intended to help facilitate consistency in FEM and ARM applications; their use is not required.
- Availability of FEM and ARM Case Study Templates
 - http://www.epa.gov/ttn/amtic/pm25fem/
 - Questions/comments can be sent to Tim Hanley
 - Email: hanley.tim@epa.gov
 - Expect final in March 2007; also on AMTIC web site
- Acknowledgments
 - EPA ORD
 - Robert Vanderpool
 - Elizabeth Hunike
 - RTI
 - Frank McElroy

Other Minimum Monitoring Network Requirements

Ozone

- What's new:
 - Minimum monitoring requirements based on MSA population and design value
- For your consideration:
 - Basically business as usual
 - Reevaluate monitor locations as needed to insure you are in appropriate locations to measure maximum concentration and meet other objectives
 - EPA has agreed to propose action to revise or retain the current ozone standards by June 20, 2007 and take final action by March 12, 2008 – follow the process

CO, SO₂, NO₂ Monitors

What's new:

- No minimums, but need EPA approval to remove
- Rule contains some specific conditions in which removal will be approved.
 - Clean enough AQ
 - Redundant monitors
- Other cases to be addressed individually, based on need for the data
- May need to amend maintenance plan.

For your consideration:

- Revisit monitoring objectives
- Discontinue low value sites even though marginal savings may not be large in the short term. Watch out for SIP commitments for specific monitors and/or contingency measures tied to monitoring triggers
- Replace retained monitors with high-sensitivity models to improve tracking of decreasing ambient values

NCore Multi-pollutant Monitoring Network

Purpose of NCore Network

- To develop a data set of co-located measurements of:
 - PM and its precursors and components
 - Ozone and its precursors
 - Meteorology important to PM and ozone formation
- This data will be used to:
 - Assess contributions of various source categories
 - Improve our understanding of PM and ozone formation
 - Validate and improve models
 - Provide information for health studies
 - Track effectiveness of emission reduction programs
 - Support science and ecosystem studies

Proposed NCore Site 361010003 Pinnacle Park, New York

Minimum NCore Network Requirements

1 Site

2 or 3 Sites

(All fifty States, District of Columbia, Puerto Rico, Virgin Islands)

NCore Parameter Requirements

Measurements	Comments				
PM _{2.5} FRM mass	typically 24 hr. average every 3 rd day				
PM _{2.5} speciation	Organic and elemental carbon, major ions and trace metals (24 hour average; every 3 rd day)				
PM _{10-2.5} FRM mass	typically 24 hr. average every 3 rd day				
PM _{10-2.5} speciation	typically 24 hr. average every 3 rd day				
continuous PM _{2.5} mass	1 hour reporting interval				
ozone (O ₃)	all gases through continuous monitors				
carbon monoxide (CO)	capable of trace levels (low ppb and below) where needed				
sulfur dioxide (SO ₂)	capable of trace levels (low ppb and below) where needed				
nitrogen oxide (NO)	capable of trace levels (low ppb and below) where needed				
total reactive nitrogen (NO _y) ¹	capable of trace levels (low ppb and below) where needed				
surface meteorology ²	wind speed and direction, temperature, relative humidity				

¹ In areas with negligible expected difference between NOy and NOx measured concentrations, the Administrator may allow for waivers that permit NOx monitoring to be substituted for the required NOy monitoring at applicable NCore sites.

² The requirement for meteorological monitoring can be waived by the Administrator if the NCore site is not suitable for representative meteorological measurements due to the site's physical surroundings and it is possible for nearby meteorological measurements to fulfill this data requirement.

Status Of NCore Pilot Program

- We have information on approximately 70 existing and potential NCore site locations. No sites formally approved yet by OAQPS.
 - Final proposed NCore sites must be included in July 1, 2009 plan but earlier approvals would be optimal.
- OAQPS is developing an AMTIC-based web tool to help organize information about NCore sites and serve as an outreach tool for potential data users. How you can help:
 - Insure that all fields in AQS are completed for candidate sites.
 - Follow-up on data request sent through Regions last summer for GPS-obtained coordinates, site and cardinal direction photographs (8 sectors), currently operating parameters.
 - Please forward information to Kevin Cavender at: (<u>cavender.kevin@epa.gov</u>) – (919)-541-2364.
 - Web tool should become available spring 2007 after R.O. review.

Proposed NCore Site Locations

Quality Assurance

What's New

- Many sensible relaxations of periodic checks, etc.
 - 1:12 collocation, instead of 1:6
- A few new or stronger requirements.
 - Flow rate audits on high volume PM
- Revised precision and bias calculations
- Flexible audit ranges to include trace level gases
- States must make sure independent audits happen and cover with STAG \$.
- TTP (through the probe) NPAP gearing up for precursor gas monitoring to support NCore deployment
- Primary Quality Assurance Organization (PQAO) terminology and implementation
- QA contact: Dennis Mikel
 - mikel.dennisK@epa.gov
 - 919-541-5511

P&B Guidance and Data Assessment Statistical Calculator (DASC) Software

-4.000

-4.000

-4.500

16.000

16.000

4.000

4.000

4.500

16.000

16.000

20.250 16.000

DASC (Data Assessment Statistical Calculator)

{Enter Site ID or Name Here}

PM 2.5

PM 10-2.5

Step 2 Step 1 Pick a Pollutant Pick a Statistic to Calculate Automated Methods Precision Estimate SO2 Bias Estimate NO2 Absolute Bias Estimate C 03 Semi-Annual Flow Rate CO Cone-Point Flow Rate PM 2.5 C PM10 PM 10-2.5 Manual Methods Step 3

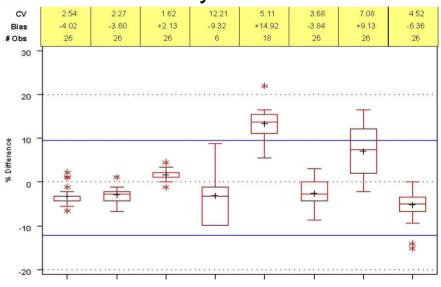
Go To Worksheet

19.2

19.2

19.1

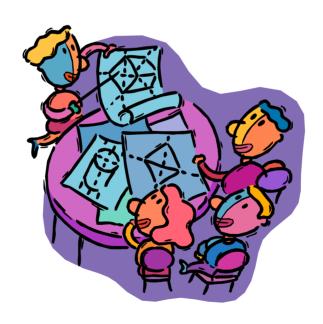
Gaseous Assessments														
	te ID: Bu		Pollutant type	: NOy API					(CV_ub (%)		Bias (%)		
N		Audit Val												
	(Y)	(X)	d (Eqn. 1)	25th Percentile	d_sqrd		d_abs ^2							
19).9	20	-0.500	-6.500	0.250	0.500	0.250							
20		20	0.000	75th Percentile	0.000	0.000	0.000	r	1	st dev(d)	st dev (d^2)	sum(d_abs)	"AB" (Eqn 3a)
19		20	-1.000	-4.000	1.000	1.000	1.000		162	2.544	27.349			5.330
19		20	-0.500		0.250	0.500	0.250	n-1		sum(d)	sum(d^2)	sum(d_abs^2)	"AS" (Eqn 3b	
20)	20	0.000		0.000	0.000	0.000		161	-850.500	5507.250	5507.250		2.370
20).1	20	0.500		0.250	0.500	0.250						_	
19	.9	20	-0.500		0.250	0.500	0.250					Bias (%) (Eqn 3)	Both Signs Positive	
19).9	20	-0.500		0.250	0.500	0.250		_			5.64	FALSE	
19	0.6	20	-2.000		4.000	2.000	4.000		c	V (%) (Eqn 2)		Signed Bias (%)	Both Signs Negative	Э
19	0.6	20	-2.000		4.000	2.000	4.000			2.74		-5.64	TRUE	
19).7	20	-1.500		2.250	1.500	2.250		_					
19	0.6	20	-2.000		4.000	2.000	4.000		Ū	Jpper Probab	ility Limit	Lower Probabilit	y Limit	
19	0.8	20	-1.000		1.000	1.000	1.000			-0.26		-10.24		
19	0.6	20	-2.000		4.000	2.000	4.000		_					
19).5	20	-2.500		6.250	2.500	6.250							
19).7	20	-1.500		2.250	1.500	2.250				NOv ADI Dor	cent Difference		
19	0.6	20	-2.000		4.000	2.000	4.000				NOy API Per	cent Dinerence		
19).6	20	-2.000		4.000	2.000	4.000							
19		20	-4.500		20.250	4.500	20.250		8.000	1				
19		20	-2.500		6.250	2.500	6.250		6.000		•			
19		20	-3.000		9.000	3.000	9.000		4.000					
19		20	-2.000		4.000	2.000	4.000	uce	2.000					
19		20	-2.500		6.250	2.500	6.250	ere	0.000	1 /•				
19		20	-2.500		6.250	2.500	6.250	措	-2.000	THE STATE OF THE S		A.		
	1.4	20	-3.000		9.000	3.000	9.000	Į	-4.000	***	Water Author		W	
19		20	-2.500		6.250	2.500	6.250	Percent Difference	-6.000		WAY WAY	The state of the s	****	
19		20	-3.500		12.250	3.500	12.250		-8.000			***	144	
19		20	-4.500		20.250	4.500	20.250		-10.000			<u> </u>	-	
19		20	-4.500		20.250	4.500	20.250		-12.000			•		
19).3	20	-3.500		12.250	3.500	12.250		-14.000					


Observations

AMP 255 Report

Region	State	Agency	Site	CFR Lower	CFR Upper Limit	Bias UB	су ив
01	CT	0251	090010017	NA NA	NA NA	- 2.17	0.77
01	CT					_	
		0251	090011123	NA NA	NA Na	4.15	4.88
01	CT	0251	090013007	NA NA	NA NA	-4.35	2.17
01	CT	0251	090019003	NA	NA	2.98	3.13
01	CT	0251	090031003	NA	NA	1.62	1.92
01	CT	0251	090070007	NA	NA	-3.95	1.96
01	CT	0251	090090027	NA	NA	0.60	0.84
01	CT	0251	090093002	NA	NA	-3.75	1.98
01	CT	0251	090110008	NA	NA	2.11	2.52
01	CT	0251	090131001	NA	NA	-4.04	1.22
01	CT	0251	All - NSP	-6.72	+3.53	-2.73	2.77
01	MA	0660	250010002	NA	NA	-1.61	1.35
01	MA	0660	250034002	NA	NA	+1.80	1.52
01	MA	0660	250051002	NA	NA	-2.99	0.61
01	MA	0660	250092006	NA	NA	-4.49	4.14
01	MA	0660	250094004	NA	NA	3.50	4.41
01	MA	0660	250095005	NA	NA	-1.64	1.9
01	MA	0660	250130008	NA	NA	1.73	2.11
01	MA	0660	250150103	NA	NA	+2.64	1.85
01	MA	0660	250154002	NA	NA	-4.84	2.14
01	MA	0660	250171102	NA	NA	-1.31	0.49
01	MA	0660	250213003	NA	NA	-1.32	1.13

- Monitoring Orgs. Can run this as often as they wish
- OAQPS will run annually
- Box–and-whisker plots included in annual summary



Annual Monitoring Network Plan

- Regularly scheduled evaluation of monitoring network
 - Includes evidence that applicable regulations and appendices are being met for existing network
 - Specific plan elements listed in 40 CFR Part 58.10(b)
- First plan under rule revisions due July 1, 2007
 - Draft plan must be made available for public inspection at least 30 days prior to submission to EPA.
 - Plans that propose modifications must be approved by the EPA Regional Administrator, who shall provide opportunity for public comment and shall approve or disapprove within 120 days (public comment period can be waived based on certain conditions).
 - Many State plans are <u>currently</u> out for public inspection or have already been forwarded to R.A.

Updates and Discussion Items

Discussion Item – AQS Site ID Policy with "Minor" Relocations

- Question How to decide when a site ID needs to be changed following a "minor" site relocation
 - Historically, decisions made on a case by case basis.
 Consult with Regional Office.
 - Scale of representation is key moving a microscale site a short distance may be very significant.
 - AQS doesn't retain site coordinate information so new coordinates will "overwrite" old information, causing site to "hop" around when comparing maps over time
 - Use site comment field to document minor relocations
 - Collocated monitoring at old and new sites desirable
 - Can be harder to calculate design values when data records split among site ID's.

Discussion Item – Having AQS calculate PM10 in STP from LTP reported values

- Issue Current PM10 NAAQS requires concentrations value to be corrected to standard temperature and pressure.
 - Other PM data (PM2.5, PM10-2.5) reported to local conditions (LTP)
 - Agencies wish to be relieved of double reporting burden
 - Scenario Report PM10 in LTP and average temperature and pressure
 - AQS handles the STP conversion for the PM10 NAAQS
 - EPA recognizes the value in this capability but AQS update resources are very limited.
 - Rule required AQS updates must get highest priority
 - Status In its long term planning for AQS enhancements, EPA will consider the relative priority of an AQS modification to be able to automatically calculate the corresponding PM-10 values at standard conditions from a submittal of PM-10 data at local conditions

Update - PM2.5 Speciation Carbon Conversion Joann Rice - Methods Contact - rice.joann@epa.gov

- PM_{2.5} Chemical Speciation Network (CSN):
 - Speciation Trends Network (STN)
 - 54 Trends sites: Largely static urban monitoring stations and protocols for sampling and analysis
 - State and Local Air Monitoring Stations (SLAMS)
 - Currently ~150 sites: monitors for state and local agency directed monitoring objectives
- Changes in the network to address inconsistencies in <u>carbon sampling and</u> <u>analysis</u> procedures used in urban CSN and rural IMPROVE programs
 - Field blank collection and subtraction also changing

Update - PM2.5 Speciation Carbon Conversion

- Phase I completed May 2007
 - May 3rd start date for monitoring
- Phase 2 site selection starting now
 - Expect fall 2007 installation start date
- URG3000N web page created
 - http://epa.gov/ttn/amtic/specurg3000.html
- AQS reporting implications
 - New AQS method codes and parameter codes were developed to accept organic carbon (OC) and elemental carbon (EC) data and the fractions of OC and EC at local conditions. This work is being finalized.
 - Field Guide to Air Quality Data (Nick Mangus)
 - http://www.epa.gov/ttn/airs/aqsdatamart/documentation/index.htm
 - A description of every field in AQS, the AQS input transactions, the AQS reports, and the AQS Data Mart.

Questions

